Spectral extraction of BOSS fully-depleted CCD data

Workshop on Precision Astronomy with Fully Depleted CCDs BNL Nov. 2013

Julien Guy
LBNL & LPNHE Paris

on behalf of the BOSS collaboration

(slides "borrowed" from S. Bailey, D. Schlegel, A. Font-Ribera, N. Roe, P. Jelinski +many papers)

Outline

Brief description of:

- Science with BOSS
- BOSS spectrograph (Smee et al., arXiv:1208.2233)
- Data reduction pipeline

Data reduction challenges (in relation with CCDs):

- Optimal extraction for Emission Line Galaxies
- Characterization of the PSF

CCD effects in BOSS:

- Clock phase mismatch at boundary of amplifiers
- Scattering on the back side of the CCD for the longest wavelength
- PSF width as a function of signal intensity
- Impact on PSF of diffusion in CCD and large incidence angles

- 3D (angle, redshift) catalogs of
 - 1.3(*) million galaxies (Large Red Galaxies) at redshifts 0.3-0.6
 - 160 thousand quasars (QSO) at redshifts 2.2-3.5

(*) +200k from SDSS-II

- needs an input multi-band photometric catalog, a target selection method

- Based on galaxy catalog (BOSS data: redshifts)
 - Baryon acoustic oscillations (measure of angular distance, H(z)) at z~0.6
 - Matter power spectrum
 - Redshift space distortions (measure of growth rate of structures)
- Lyman-alpha forest (BOSS data: spectra)
 - Baryon acoustic oscillations at z~2.2
 - Matter power spectrum at small scales : constraints on ns, neutrino mass

- Based on galaxy catalog (BOSS data: redshifts)
 - Baryon acoustic oscillations (measure of angular distance, H(z)) at z~0.6
 - Matter power spectrum
 - Redshift space distortions (measure of growth rate of structures)
- Lyman-alpha forest (BOSS data: spectra)
 - Baryon acoustic oscillations at z~2.2
 - Matter power spectrum at small scales : constraints on ns, neutrino mass

- Based on galaxy catalog (BOSS data: redshifts)
 - Baryon acoustic oscillations (measure of angular distance, H(z)) at z~0.6
 - Matter power spectrum
 - Redshift space distortions (measure of growth rate of structures)
- Lyman-alpha forest (BOSS data: spectra)
 - Baryon acoustic oscillations at z~2.2
 - Matter power spectrum at small scales : constraints on ns, neutrino mass

Busca 2013, Slosar 2013

- Based on galaxy catalog (BOSS data: redshifts)
 - Baryon acoustic oscillations (measure of angular distance, H(z)) at z~0.6
 - Matter power spectrum
 - Redshift space distortions (measure of growth rate of structures)
- Lyman-alpha forest (BOSS data: spectra)
 - Baryon acoustic oscillations at z~2.2
 - Matter power spectrum at small scales : constraints on ns, neutrino mass

Fig. 23: Fit of the power spectrum measured with BOSS in the range z = [2.1 - 3.7]; the z and k binning of McDonald et al. (2006) is adopted.

Fig. 26: 2D confidence level contours for the σ_8 and n_s cosmological parameters with a frequentist interpretation. The red and black curves are obtained respectively for SDSS and BOSS measurements of the power spectrum.

The BOSS spectrograph

2.5m telescope on Apache Point Obs. New Mexico

Two double-spectrographs (permanently mounted)

3° focal plane: Either imaging camera or 1 of 8 spectro cartridges (swapped during night)

"Doghouse":
Stores imaging camera
when not in use
(now removed from
telescope)

The BOSS spectrograph

SDSS-III / BOSS spectrograph

1000 fibers holes drilled on aluminum plate

Zoom on fiber split-end (bundle of 20 fibers) 25 bundles per CCD

Hand plugging of fibers on cart-ridge

BOSS CCDs

LBNL 4kx4k Fully Depleted, Red Sensitive

Blue CCDs

- 2 + 1 spare 231-84 BI CCDs from e2v
- 4096 x 4112 15 um pixels
- Low read noise ~ 1.8-2.0 e- at 88kHz, especially important for QSO studies

Red CCDs

- 2 + 1 spare red 4k x 4k CCDs from LBNL
- Fully depleted 250 um thick for improved red response, reduced fringing
- Window-frame style package
- Read noise ~ 2.4-2.8 e- at 88 kHz

CCD performances

TABLE 4
CCD PERFORMANCE FOR SDSS AND BOSS

	1	11		1 C	C
	read noise	dark current	gain	number of	fraction of
	(e^{-})	$(e^-/\text{pix}/15 \text{ min})$	(e^-/ADU)	bad columns	bad pixels
SDSS					
b1	2.8 – 3.8	1.05 - 1.10	1.05 – 1.10	4	
b2	3.2 - 3.9	1.23 - 1.26	1.23 - 1.26	4	
r1	3.5 – 4.1	1.00 - 1.09	1.00 - 1.09	14	
r2	3.6 – 4.4	1.04 - 1.05	1.05	10	
Start of BOSS					
b1	1.79 - 1.98	0.64 - 0.68	1.01 - 1.05	0	2.0e-05
b2	1.74 - 2.04	0.61 - 0.65	0.99 - 1.04	2	2.1e-04
r1	2.36 – 2.72	0.88 – 1.10	1.54 - 1.97	5	1.4e-04
r2	2.42 – 2.99	0.95 - 1.97	1.54 - 1.96	3	1.8e-04
MJD 55300 (r2 replaced)					
b1	1.83 - 2.01	0.51 - 0.53	1.01 - 1.05	0	2.1e-05
b2	1.87 - 2.03	0.53 - 0.56	0.99 - 1.04	2	2.1e-04
r1	2.43 – 2.73	0.63 - 0.80	1.54 - 1.97	5	3.3e-04
r2	2.73 - 2.89	1.19 – 2.27	1.59 - 1.66	11	4.4e-04
MJD 55800 (r1 replaced)					
b1	1.77 - 2.02	0.46 - 0.49	1.01 - 1.05	0	2.1e-05
b2	1.86 – 2.01	0.56 – 0.59	0.99 – 1.04	2	2.1e-04
r1	2.45 – 2.82	0.57 – 0.82	1.47 - 1.93	1	3.3e-04
r2	2.85 – 2.88	1.30 - 1.56	1.59 - 1.66	11	2.5e-04

- Full-well depth much larger than 65k e-/pixel
- CTE > 1-10^-5 (see Dawson 2008, tested at LBNL with 55Fe source)
- readout time 55.6 sec
- overall overhead of 70 sec (pre-exposure flush+read)

BOSS data reduction pipeline (CCD level)

Standard extraction:

- bias subtraction
- bad pixels masking
- cosmic ray identification
- 1D Gaussian profile/PSF extraction perp. to the dispersion axis
- [follows a complex analysis (sky sub., redshift measurement) see Bolton et al. (2012)]

BOSS data reduction pipeline (CCD level)

Calibration sequence

- pixel to pixel flat fielding using lossy fiber
- fiber flat fielding using petals illuminated with 3100K quartz-iodine lamp.
 - -> flat(fiber,wavelength), X_ccd(fiber,wavelength), PSF_x(fiber,wavelength)
- wavelength calibration using screen illuminated mercury-cadmium lamp for B channel, and Neon-Argon for R-channel.
 - -> Y_ccd(fiber,wavelength), PSF_xy(fiber,wavelength)
- trace coordinates shift (X,Y)=f(fiber,wavelength) reevaluated on each science image
- spectro-photometric calibration with fibers allocated to stars (modeled).
 - -> flux(fiber,wavelength)

BOSS data reduction pipeline (CCD level) Pixel to pixel flat fielding

with a lossy fiber illuminated by a Deuterium Tungsten Halogen light source

one slit-plate where 25 slit -heads of 20 fibers are aligned

location of the lossy fiber

BOSS data reduction pipeline (CCD level) **Fiber flat fielding**

Continuum lamp shining on telescope petals mounted on wind baffle structure (Gunn et al 2006)

r1 CCD flat field image (zoom, log-scale)

r-CCD:

fiber diameter on image: 3.1 pixels distance between fibers: 6.7 pixels

one fiber with lower throughput

boundary between two amplifiers with distorted pixels (will talk about this later)

BOSS data reduction pipeline (CCD level)

Arc lamp images for wavelength calibration

Outline

Brief description of:

- Science with BOSS
- BOSS spectrograph (Smee et al., arXiv:1208.2233)
- Data reduction pipeline

Data reduction challenges (in relation with CCDs):

- Optimal extraction for Emission Line Galaxies
- Characterization of the PSF (spectro-photometry is irrelevant)

CCD effects in BOSS:

- Clock phase mismatch at boundary of amplifiers
- Scattering on the back side of the CCD for the longest wavelength
- PSF width as a function of signal intensity
- Impact on PSF of diffusion in CCD and large incidence angles

Data reduction challenges (at CCD level) Optimal extraction : spectral PSF 2D features

- High redshift efficiency in BOSS for luminous galaxies (LRG selected in mass: "CMASS" sample)
- on the plot scale is 0 12%.
- inefficiencies on edges of f.o.v. are correlated to edges of spectrograph CCD (because of fiber plugging constraints)
- 2D PSF extraction (will) help improve this

important for redshift measurement of faint Emission Line Galaxies (Comparat et al. 2013)

In development : Spectral extraction

- using 2D PSF extraction
- extracting simultaneously signal from 20 fibers (see Bolton & Schlegel, 2010)

20

Data reduction challenges (at CCD level) Optimal extraction : sky background substraction

- sky spectrum measured on specifically allocated fibers
- interpolated to the whole focal plane

Requires:

- a precise fiber flat fielding
- a precise PSF model (fiber to fiber variation)

Illustration: Comparat et al (2013) redshift measurement of emission line galaxies (test run on BOSS spectrograph)

Data reduction challenges (at CCD level) PSF calibration for Lyman-alpha power spectrum

Fig. 13. Ratio of the matter power spectrum including three degenerate massive neutrinos with density fraction f_{ν} to that with three massless neutrinos. The parameters $(\omega_{\rm m},\,\Omega_{\Lambda})=(0.147,0.70)$ are kept fixed, and from top to bottom the curves correspond to $f_{\nu}=0.01,0.02,0.03,\ldots,0.10$. The individual masses m_{ν} range from 0.046 eV to 0.46 eV, and the scale $k_{\rm nr}$ from $2.1\times10^{-3}h\,{\rm Mpc^{-1}}$ to $6.7\times10^{-3}h\,{\rm Mpc^{-1}}$

(Lesgourgues & Pastor 2006)

Fig. 10: Window function $W^2(k, \bar{R}, \Delta v)$, with $\Delta v = 69 \,\mathrm{km/s}$, reproducing the spectrum binning and the impact of the spectrograph resolution, for a resolution $\bar{R} = 60 \,\mathrm{km/s}$ typical at $\lambda > 5000 \,\mathrm{Å}$ and $\bar{R} = 80 \,\mathrm{km/s}$ typical at $\lambda < 4300 \,\mathrm{Å}$. For comparison, we also show the contribution from the pixellization only (equivalent to $\bar{R} = 0$).

(Palanque-Delabrouille et al 2013)

at k=1 h/Mpc = 0.01 (km/s)^-1
$$\frac{\partial \log P(k)}{\partial m_{\nu}} \sim 2 \text{ eV}^{-1} \quad \frac{\partial \log P(k)}{\partial \log \sigma_{PSF}} \sim 1.2 \quad \frac{\partial m_{\nu}}{\partial \log \sigma_{PSF}} \sim 0.6$$

- SDSS-II measure (McDonald et al, Seljak etl al 2006)
- DESI goal (Font-Ribera et al 2013)
- (*) combining many probes, **not** dominated by Lyman-alpha

sum mu_nu < 0.17 eV (95%) sum m_nu < 0.02 eV (*)!

Outline

Brief description of:

- Science with BOSS
- BOSS spectrograph (Smee et al., arXiv:1208.2233)
- Data reduction pipeline

Data reduction challenges (in relation with CCDs):

- Optimal extraction for Emission Line Galaxies
- Characterization of the PSF

CCD effects in BOSS:

- Clock phase mismatch at boundary of amplifiers
- Scattering on the back side of the CCD for the longest wavelength
- PSF width as a function of signal intensity
- Impact on PSF of diffusion in CCD and large incidence angles

Tree rings in r1-CCD observed with the lossy fiber

(but has been flattened to get mean $_x = 1$)

Do tree rings matter for spectroscopy?

I learned at this workshop that the DES astrometric bias from tree rings ~ 0.1 pixel (peak to peak).

Assuming this number for BOSS r CCDS, with d lambda /d y = 1.4 A/pixel, at 8000 A,

the bias on redshift is of 2*10^-5.

It's a negligible effect

Some artifacts in r-CCDs flat field images

Discontinuity at the boundary of amplifiers on r-ccds (here r1)

Discontinuity at the boundary of amplifiers on r-ccds (here r1)

Explained by an inadequate phase difference of clocks between the two amplifiers.

Distance between central pixels = 4/3 pixel

- expects a discontinuity of 1/3 pixel of wavelength mapping on CCD, consistent with obs.

- expects extra signal of 7/6 in the two central pixels, excess sum of 1/3.

- distorted electric field lines may dilute this effect on more pixels but without changing

integral of 1/3 (no electron is lost).

I will address:

- 1) scattering on the back of the CCD for the longest wavelength
- 2) intensity-width effect
- 3) charge diffusion
- 4) incidence angle effect for long wavelength

Those effects are hard to disentangle with optical effects:

- fiber size
- optics aberrations
- diffraction due to entrance pupil (negligible for BOSS)
- diffraction of the grating (no evidence yet for this)
- scattered light due to roughness of optical surfaces

Simulation for DESI (P. Jelinski) Diffraction Detector

CCD effects affecting the PSF Scattering on the back side of the CCD for the longest wavelength

Tests and analysis performed by N. Mostek & J. Thacker

long wavelength (1000nm-1050nm) spots (0.5 pix.) on a SNAP v2 BI device

(200 micron thick, 10.5 micron pixels)

Scattering in the direction of the CCD columns and rows -> interaction with the vertical clock gate structure and channel stops (?)

CCD effects affecting the PSF Scattering on the back side of the CCD for the longest wavelength

We "may" be seeing this is BOSS arc lamp images

wavelength = 7200A

wavelength = 10000A

(this trace along wavelength is not related to the PSF)

because not seen on laser data (here at 9100A)

PSF width vs Intensity

PRELIMINARY analysis based on fiber flat field images, with exposure times ranging from 6s to 80s.

PSF width vs Intensity (here exposure time)

$$\frac{\sigma_x(T=40\ s)}{\sigma_x(T=6\ s)} - 1$$

$$\frac{\sigma_x(T=80\ s)}{\sigma_x(T=6\ s)} - 1$$

wavelength (A)

delta(width)/width ~ 0.15% at wavelength = 5500A for flux ratio ~ 6

delta(width)/width ~ 0.55% at wavelength = 9000A for flux ratio ~ 13

effect increases with wavelength but PSF shape varies with wavelength

PSF width vs Intensity (here exposure time)

b1 CCD for wavelength>4500A

r1 CCD for wavelength>7000A

PSF width $\propto (\text{Counts})^a$

b1 CCD : a = -0.0001 +- 0.0003

b2 CCD : a = 0.0002 + -0.0003

r1 CCD : a = 0.0021 +- 0.0002

r2 CCD : a = 0.0020 +- 0.0002

(this is still preliminary:

- fluctuations from fiber to fiber not understood,
- large change of PSF with fiber and wavelength
- measurements averaged over two series, which give consistent results)

PSF width vs Intensity (here exposure time)

b1 CCD for wavelength>4500A

r1 CCD for wavelength>7000A

(this is still preliminary:

- fluctuations from fiber to fiber not understood,
- large change of PSF with fiber and wavelength
- measurements averaged over two series, which give consistent results)

CCD effects affecting the PSF Diffusion and incidence angle effect

Detector Schematic

(P. Jelinski for DESI project)

CCD effects affecting the PSF Diffusion and incidence angle effect

For BOSS, the contribution of diffusion to the PSF is almost negligible

- * For e2v **b-CCDs**, **sigma~5 um**, or ~1/3 pixel (fiber diameter is 3 pixels)
- * For the LBL deep-depleted CCDs (see Holland et al. 2003)

$$\sigma_{max} = \sqrt{\frac{2kT}{qV}} y_D$$

(yd is the thickness of the depleted region and V the difference of potential)

For BOSS r-CCDs, sigma(max) ~ 5 um, it is also negligible

Incidence angle effect

(also quite negligible)

grey dots: measured PSF

- edge fiber

- central fiber

green: with incidence angle effect

black: with diffusion blue: with pixel size

red: fiber size

Concluding remarks

- CCD effects have little impact on science addressed by BOSS so far.
- New feature is the PSF width variation with the intensity of signal (requires a refined analysis and an evaluation of the impact for science)
- Some analysis are more demanding in terms of understanding of CCD-level data, in particular the PSF and noise (for Lyman-alpha forest analysis where sources are not resolved, and noise has to be subtracted from the power-spectrum)
- Upcoming e-BOSS survey and DESI project target Emission Line Galaxies where improved data reduction will improve the scientific outcome.